The 6425 is designed to give fast and accurate readout of component values, easy sorting of resistors, capacitors and inductors, detailed analysis of networks, and rapid monitoring of changing values. An extended measurement range, wide choice of operating frequency and adjustable drive level make the Analyzer a powerful tool in design laboratories, goods inwards sections, test departments and in connection with chemical and physical research work.

A cathode-ray tube is used to present clear and unambiguous results in numeric and graphic form, to display warning and other messages and, under software control, it automatically labels a set of ten 'soft' keys to show the parameter selection available for each mode of operation. All key settings are retained in non-volatile memory. Because there are no variable controls requiring user adjustment, and values can be read directly in the terms required, confidence in the validity of results is maximized for all levels of operator skill.

Four-terminal connections provide continuous correction for losses occurring in measurement leads or fixtures, ensuring the maintenance of dependable five-figure resolution and the specified accuracy over the full C, L and R ranges. The number of digits displayed - up to a maximum of six - is automatically adjusted to be commensurate with the accuracy. Trimming ($0 / C$ and S / C) is, in each case, a simple pushbutton operation, with corrections applied automatically to suit the particular measurement conditions at any time.

Range selection is automatic, with manual over-ride provided, together with a visual reminder when an alternative range would offer better resolution. Should a measurement lie beyond the range selected manually, the display is blanked, obviating false results.

Sorting, pass/fail and deviation operations are all provided for. A numeric keypad allows limits to be set precisely, in \% or Absolute terms, with the software guiding the user through the procedure and warning of any missing or invalid keying operations. A keyboard lockout function protects against unauthorized or inadvertent changes to established measurement conditions.

Other features include direct readout of D, Q or loss resistance at the same time as C or L, choice of equivalent series or parallel circuit values, display of actual signal level at the test point and provision for introducing dc polarizing voltages.

Options for the Precision Component Analyzer include an RS232-C Printer Interface; a GPIB Interface (to IEEE Std 488-1978); a Standard Handler Interface and Analog Outputs of 2 measured parameters. Basic information on these options is included in this Manual: for further details please contact your Supplier.

MEASUREMENT SYSTEM

Microprocessor-controlled.
'Soft' keys for measurement functions \& conditions. Selected functions held in non-volatile memory. Electronic 'lock-out' of key functions.
Measurement trigger by remote contacts.
Plug-in options for interface with controllers/ printers/plotters/sorters.

DISPLAY $\quad 7$-inch (18 cm) CRT for values, conditions, soft-key functions, instructions and warning messages.
Number of digits displayed (max: 6) depends on measurement accuracy.
$C \& D, C \& Q, C \& R\} \quad$ Series or parallel
$L \& D, L \& Q, L \& R\}$ equivalent circuit
$C \& G, L \& G \quad P a r a l l e l$ equivalent circuit
$Z \& \angle \theta, Y \& \angle \theta \quad$ Signal level at Unknown

Deviation: \% change from measured Nominal (L C Z or Y).
Limits: \% or Absolute for Go/Nogo testing, with Analog Bar Display.
Binning: Sorts by major/minor term limits into 9 bins (tenth for rejects).
Auto-Trim: Compensates for residual series impedance and parallel capacitance of measurement leads up to $1 \Omega / 50 \mathrm{pF}$ maximum. Trimmed value held in non-volatile store.

Frequency (Hz): 20, 25, 30, 40, 50, 60, 80, 100, 120, 150, 200 etc, repeats each decade up to 60k, then 75k, 100k, 120k, 150k, 200k, 300k (42 frequencies).
Frequency accuracy: $\pm 0.01 \%$.

MEASUREMENT CONDITIONS
(continued)

AC Drive level:
10 mV - 500 mV (10 mV steps)) Available if Unknown
520 mV - 1.0 V (20 mV steps) \}. impedance $>10 \Omega$ $1.05 \mathrm{~V}-2.5 \mathrm{~V}$ (0.05 V steps)) Available if Unknown $2.6 \mathrm{~V}-5.0 \mathrm{~V}$ (0.1 V steps) $\}$ impedance $>80 \Omega$ $\left.\begin{array}{l}1 \mathrm{~mA}-50 \mathrm{~mA} \text { (1mA steps) } \\ 52 \mathrm{~mA}-100 \mathrm{~mA} \text { (2mA steps) }\end{array}\right\} \begin{gathered}\text { Available if Unknown } \\ \text { impedance }<10 \Omega\end{gathered}$
Drive mode (current/voltage) selected automatically as a function of impedance range.
When in current drive, with Z or Y selected, the voltage across the Unknown can be displayed, and vice versa.
At 300 kHz , voltage drive restricted to 3 V maximum. AC Level accuracy (at source):
$30 \mathrm{~Hz}-120 \mathrm{kHz}$: voltage $\pm 4 \% \pm 2 \mathrm{mV}$
" " current $\pm 5 \% ~ \pm 200 \mu \mathrm{~A}$
20 Hz \& 25 Hz voltage $\pm 7.5 \% \pm 2 \mathrm{mV}$
$120 \mathrm{kHz}-200 \mathrm{kHz}$ current $\pm 8.5 \% \pm 200 \mu \mathrm{~A}$

300 kHz : voltage $\pm 11.5 \% \pm 2 \mathrm{mV}$
॥
current $\pm 12.5 \% \pm 200 \mu \mathrm{~A}$

Source loading. Max level reduction at $Z u=10 \Omega$:
Capacitive or Inductive Unknown:
4\% (voltage drive)
3\% (current drive)
Resistive Unknown:
18\% (voltage or current drive).
DC Bias voltage.
Internal: adjustable supply with separate on/ off switch and safety link.
$0.1 V-5 V(0.1 V$ steps)
5.2 V - 10 V (0.2V steps)
10.5 V - 20 V (0.5 V steps)

Open- circuit accuracy $\pm 2 \% \pm 60 \mathrm{mV}$
Max. continuous leakage current in Unknown: 3mA +0.25mA/V. Charge/discharge limited to <1A or <500V/sec.

DC Bias voltage (continued)
External: additional supply can be connected
in series with internal supply to
increase available voltage.
Controlled by internal on/off switch.
Supply current limited to 1 A .
Max. total voltage (internal + external): 50V. Open-circuit accuracy at measurement terminals: $\pm 2 \% \pm 60 \mathrm{mv}$.
Max. continuous leakage current in Unknown: 3mA.

MEASUREMENT RANGES

Automatic range selection can be inhibited by Hold function (Range Error shows when a change of range could give improved accuracy). When in Hold, a desired range can be selected by keying the corresponding code.

Range	Impedance	Maximum ac
Number	coverage	Drive Level
1	$<1.25 \Omega$	100 mA
2	$<10 \Omega$	100 mA
3	$>10 \Omega$	1 V
4	$>80 \Omega$	5 V
5	$>640 \Omega$	5 V
6	$>5.12 \mathrm{k} \Omega$	5 V
7	$>41 \mathrm{k} \Omega$	5 V
8	$>328 \mathrm{k} \Omega$	5 V

Range 8 available up to 10 kHz .
Range 7 available up to 60 kHz .
For drive levels below 25mA, Range 1 not available.

For drive levels below 250 mV , highest range at each frequency not available.
At 300 kHz , max level $=3 \mathrm{~V}$.

	At IV or 100 mA . Slow Speed. (See also page 2-7).
ACCURACY	Resolution figures apply from 250 mV or 25 mA upwards. From 30 mV to 240 mV , and 3 mA to 24mA, multiply by 10.
Resistance (R)	Full details on pages 2-8 and 2-9. Resolution: $0.005 \mathrm{~m} \Omega$ up to 10 kHz $0.05 \mathrm{~m} \Omega$ at 100 kHz $0.2 \mathrm{~m} \Omega$ at 300 kHz
Conductance (G)	$\begin{array}{lll} \text { Basic accuracy }(1 \mathrm{kHz}): & \pm .05 \% & 80 \mathrm{nS}-5 \mathrm{~S} \\ \text { Full details on pages } 2-8 \text { and } 2-9 . \\ \text { Resolution: } & 0.01 \mathrm{nS} & \text { up to } 10 \mathrm{kHz} \\ & 0.2 \mathrm{nS} & \text { at } 20 \mathrm{kHz} \\ & \operatorname{lnS} & \text { at } 50 \mathrm{kHz} \\ & 5 \mathrm{nS} & \text { at } 100 \mathrm{kHz} \\ & 0.02 \mu \mathrm{~S} & \text { at } 300 \mathrm{kHz} \end{array}$
Capacitance (C)	$\begin{aligned} & \text { Basic accuracy }(1 \mathrm{kHz}): \pm .05 \% \text { 20pF }-1800 \mu \mathrm{~F} \\ & \text { Full details on pages } 2-10 \text { and } 2-11 . \\ & \text { Resolution: } \begin{array}{l} 0.002 \mathrm{pF} \text { at } 1 \mathrm{kHz} \\ 0.0002 \mathrm{pF} \text { at } 10 \mathrm{kHz} \\ 0.002 \mathrm{pF} \text { at } 50 \mathrm{kHz} \\ \\ 0.01 \mathrm{pF} \text { at } 100 \mathrm{kHz} \end{array} \end{aligned}$
Dissipation Factor (D)	
Inductance (L)	```Basic accuracy (1kHz): \pm.1% 3\muH - 200H Full details on pages 2-14 and 2-15. Resolution: 0.1nH from 5kHz upwards```
Quality Factor (Q)	```Basic accuracy (1kHz): \pm(.05Q)% 40\muH - 160H Full details on pages 2-16 and 2-17. Resolution: better than 2% for Q }>1400\mathrm{ up to 10kHz Q $ 140 at 100kHz Q $ 32 at 300kHz```

MEASUREMENT SELECTION	Repetitive (free-running) or Single shot triggered by dedicated front-panel key or remote contact via 3.5 mm jack on front panel. This key remains active during keyboard lockout.
Measurement Speeds	Normal: Approx 400 ms /measurement above 300 Hz . Slows progressively below 300 Hz to approx 600 ms at 20 Hz . Fast (reduced accuracy): Approx 125ms/measurement above 300 Hz . Slows progressively below 300 Hz to approx 600 ms at 20 Hz . Slow (improved resolution): Approx 1.3 s /measurement up to 75 kHz . $750 \mathrm{~ms} /$ measurement for 100 kHz and above.
MEASUREMENT CONNECTIONS	Four BNC connectors permit 2, 3 and 4-terminal connections with screens at ground potential. Connection diagrams available on CRT display. Terminals withstand connection of charged capacitors, up to 50 V (100 mF max) or up to 500 V ($2 \mu \mathrm{~F}$ $\max)$, either polarity. Rear panel safety link can be removed to inhibit internal dc bias. External bias supply connects in place of safety link. Circuits are NOT protected against reverse-connected external supply.
TEMPERATURE RANGE	```Storage: -40 % to }+7\mp@subsup{0}{}{\circ}\textrm{C}(-4\mp@subsup{0}{}{\circ}\textrm{F}\mathrm{ to }+15\mp@subsup{8}{}{\circ}\textrm{F})\mathrm{ . Operating: }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+4\mp@subsup{0}{}{\circ}\textrm{C}(+3\mp@subsup{2}{}{\circ}\textrm{F}\mathrm{ to +104}\mp@subsup{}{}{\circ}\textrm{F})\mathrm{ . Full Accuracy: }1\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+3\mp@subsup{0}{}{\circ}\textrm{C}(+5\mp@subsup{0}{}{\circ}\textrm{F}\mathrm{ to +86}\mp@subsup{}{}{\circ}\textrm{F})```
POWER SUPPLY	$115 \mathrm{~V} \pm 10 \%$ or $230 \mathrm{~V} \pm 10 \%$ ac only. Consumption nominally 70VA. Instruments may be converted for 50 Hz or 60 Hz operation by fitting an internal wire link. Operation is possible with this link incorrectly set, but full accuracy may not be maintained.

In step with rapidly developing technology the Company is continually improving its products and therefore reserves the right at any time to alter specifications or designs without prior notice.

MEASUREMENT ACCURACY

Iso-Accuracy charts define the measurement ranges available, at specified accuracies, over the available frequency band. For each of the five parameters - R/G, C, D, L and Q - two sets of curves are given: one for measurements at an ac level of $1 V / 100 \mathrm{~mA}$, the second for a level of $200 \mathrm{mV} / 20 \mathrm{~mA}$. All curves assume that the slow measurement speed is used, that the Analyzer has been trimmed at the frequency used for measurements and that the component under test is pure. Beside each chart is a summary of these conditions and information on the accuracy applicable when some or all of the conditions change.

R/G High Level Accuracy

CONOITIONS

AC Drive Level: IV/100mA
Slow Speed
Analyzer trimmed at measurement frequency
$0 \nmid 0.1$
Except on highest and lowest measurement ranges, the adjacent Iso-Accuracy chart
applies also as follows:
$250 \mathrm{mV}-5 \mathrm{~V}$ and $25 \mathrm{~mA}-100 \mathrm{~mA}$

- Normal Speed

Interpolated trim
For Fast Speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.

O/C and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).

For $1>Q>0.1$ multiply accuracy by $(1+Q)$
For $Q>1$ (loss resistance of inductor) see Q accuracy chart (page 2-16)
$0<1$ (loss resistance of capacitor) see D accuracy chart (page 2-12)

High R values:Accuracy $= \pm\left(A+100 \gamma_{T} . R x\right) \%$
Low R values: Accuracy $= \pm\left(A+100 R_{T} / R x\right) \%$

where

$A=$ Accuracy from adjacent chart
$R \mathrm{RX}=$ measured value of unknown component $Y_{T}=$ sum of Y_{I}, Y_{N}, Y_{L} (as appropriate, from Table - page 2-18).
$R_{T}=$ sum of Z_{1}, R_{N}, R_{L} (as appropriate, from Table - page 2-18).

[^0]
R/G Low Level Accuracy

CONDITIONS

AC Drive Level: $200 \mathrm{mV} / 20 \mathrm{~mA}$
Slow Speed
Analyzer trimmed at measurement frequency Q f 0.1
Except on highest and lowest measurement
ranges, the adjacent Iso-Accuracy chart
applies also as follows:
$50 \mathrm{mV}-240 \mathrm{mV}$ and $5 \mathrm{~mA}-24 \mathrm{~mA}$
Normal Speed
Interpolated trim
For Fast Speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.

O/C and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).

For $1>Q>0.1$ multiply accuracy by ($1+Q$)
For $Q>1$ (loss resistance of inductor) see Q accuracy chart (page 2-17)
$0<1$ (loss resistance of capacitor) see D accuracy chart (page 2-13)

High R values: Accuracy $= \pm\left(A+100 \quad Y_{T} \cdot R x\right) \%$
Low R values: Accuracy $= \pm\left(A+100 R_{T} / R x\right) \%$
where
$A=$ Accuracy from adjacent chart
$R \mathrm{Rx}=$ measured value of unknown component
$Y_{T}=$ sum of Y_{I}, Y_{N}, Y_{L} (as appropriate,
from Table - page 2-18).
$R_{T}=$ sum of Z_{I}, R_{N}, R_{L} (as appropriate,
from Table - page 2-18).
Conductance (G): Find accuracy for equivalent R value from $R=1 / G$

CONDITIONS

AC Drive Level: IV/100mA
Slow Speed
Analyzer trimmed at measurement frequency $0 \nmid 0.1$
Except on highest and lowest measurement ranges, the adjacent Iso-Accuracy chart applies also as follows:

250 mV - 5 V and 25 mA - 100 mA

Normal Speed

 Interpolated trimFor fast speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.

O/C and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).
If $D>0.1$, multiply C accuracy by $(1+D)$ High C values:Accuracy $= \pm\left(A+100 X_{T} \cdot \omega C x\right) \%$

Low C values: Accuracy $= \pm\left(A+100 C_{T} / C x\right) \%$
where
$A=$ Accuracy from adjacent chart
$C x=$ measured value of unknown component $X_{T}=$ sum of Z_{I}, X_{N}, X_{L} (as appropriate, from Table - page 2-18).
$C_{T}=$ sum of C_{I}, C_{N}, C_{L} (as appropriate, from Table - page 2-18).
$\omega=2 \pi \times$ frequency

C Low Level Accuracy

CONOITIONS
AC Drive Level: $200 \mathrm{mV} / 20 \mathrm{~mA}$
Slow Speed
Analyzer trimmed at measurement frequency $0 \mid 0.1$
Except on highest and lowest measurement ranges, the adjacent Iso-Accuracy chart applies also as follows:
$50 \mathrm{mV}-240 \mathrm{mV}$ and $5 \mathrm{~mA}-24 \mathrm{~mA}$
Normal Speed
Interpolated trim
For Fast Speed, on all ranges, the
Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.

0/C and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).
If $D>0.1$, multiply C accuracy by ($1+0$)
High C values: Accuracy $= \pm\left(A+100 x_{T} . \omega C_{x}\right) \%$
Low C values: Accuracy $= \pm\left(A+100 C_{T} / C x\right) \%$
where
A = Accuracy from adjacent chart
$C x=$ measured value of unknown component
$x_{T}=$ sum of Z_{I}, x_{N}, x_{L} (as appropriate,
from Table - page 2-18).
$C_{T}=$ sum of C_{I}, C_{N}, C_{L} (as appropriate,
from Table - page 2-18).
$\omega=2 \pi \times$ frequency

D Low Level Accuracy

CONDITIONS
AC Drive Level: $200 \mathrm{mV} / 20 \mathrm{~mA}$
Slow Speed
Analyzer trimmed at measurement frequency D $\} 0.1$
Except on highest and lowest measurement ranges, the adjacent Iso-Accuracy chart applies also as follows:
$50 \mathrm{mV}-240 \mathrm{mV}$ and $5 \mathrm{~mA}-24 \mathrm{~mA}$
Normal Speed
Interpolated trim
For fast Speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.
$0 / C$ and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the hignest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).

If $D>0.1$, multiply D accuracy by ($1+D^{2}$). High capacitance values :
D accuracy $= \pm\left(A+R_{T} \cdot \omega C x\right)$
Low capacitance values :
D accuracy $= \pm\left(A+Y_{T} / \omega C x\right)$
Capacitor series loss resistance (esr)

- accuracy $= \pm(A / \omega C x) \Omega$

Capacitor parallel loss resistance (epr)

- accuracy $= \pm(100 \mathrm{~A} . R x / \omega \mathrm{Cx}) \%$
where
$A=$ Accuracy from adjacent chart
$C x=$ measured value of unknown component
$\mathrm{Rx}_{\mathrm{x}}=$ measured value of unknown component
$R_{T}=$ sum of Z_{I}, R_{N}, R_{L} (as appropriate,
from Table - page 2-18).
$Y_{T}=$ sum of Y_{I}, Y_{N}, Y_{L} (as appropriate,
from Table - page 2-18).
$\omega=2 \pi \times$ frequency

CONDITIONS
AC Drive Level: $1 \mathrm{~V} / 100 \mathrm{~mA}$
Slow Speed
Analyzer trimmed at measurement frequency Q \}. 10
Except on highest and lowest measurement ranges, the adjacent Iso-Accuracy chart applies also as follows:

250 mV - 5 V and $25 \mathrm{~mA}-100 \mathrm{~mA}$
Normal Speed
Interpolated trim

For Fast Speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additonal unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.

0/C and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).

If $Q<10$, multiply L accuracy by ($1+1 / Q$).
High L values:
Read accuracy direct from chart
Low L values:
Accuracy $= \pm\left(A+100 \mathrm{~L}_{T} / L x\right) \%$

where

A $=$ Accuracy from adjacent chart
$L x=$ measured value of unknown component
$L_{T}=$ sum of $L_{I}, L_{N}, L_{L} \quad$ (as appropriate,
from Table - page 2-18).

CONDITIONS
AC Drive Level: $200 \mathrm{mV} / 20 \mathrm{~mA}$
Slow Speed
Analyzer trimmed at measurement frequency Q 110
Except on highest and lowest measurement ranges, the adjacent Iso-Accuracy chart applies also as follows:
$50 \mathrm{mV}-240 \mathrm{mV}$ and $5 \mathrm{~mA}-24 \mathrm{~mA}$
Normal Speed
Interpolated trim
For Fast Speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.
$0 / C$ and S/C Trim corrections under : various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).

If $Q<10$, multiply L accuracy by $(1+1 / Q)$.
High L values :
Read accuracy direct from chart
Low L values :
Accuracy $= \pm\left(A+100 L_{T} / L x\right) \%$

where

A $=$ Accuracy from adjacent chart
$L x=$ measured value of unknown component
$L_{T}=$ sum of L_{I}, L_{N}, L_{L} (as appropriate,
from Table - page 2-18).

Q High Level Accuracy

CONDITIONS
AC Orive Level: $1 \mathrm{~V} / 100 \mathrm{~mA}$
Slow Speed
Analyzer trimmed at measurement frequency
Except on highest and lowest measurement
ranges, the adjacent Iso-Accuracy chart applies also as follows:

250 mV - 5 V and 25 mA - 100 mA
Normal Speed
Interpolated trim

For Fast Speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.

0/C and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these lso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).

For all Q values:
Q accuracy $=A(Q+1 / Q)$
High inductance values:
Read Q accuracy direct from chart
Low inductance values:
Q accuracy $= \pm\left(A+100 R_{T} / \omega L X\right)(Q+1 / Q) \%$
Inductor series loss resistance

- accuracy $= \pm(A . \omega L x / R x) \%$

Inductor parallel loss resistance

- accuracy $= \pm(A . \omega L x R x) \%$
where
A $=$ Accuracy from adjacent chart
$L_{x}=$ measured value of unknown component
$R_{x}=$ measured value of unknown component
$R_{T}=$ sum of Z_{I}, R_{N}, R_{L} (as appropriate,
from Table - page 2-18).
$\omega=2 \pi \times$ frequency

CONDITIONS

AC Drive Level: $200 \mathrm{mV} / 20 \mathrm{~mA}$
Slow Speed
Analyzer trimmed at measurement frequency Except on highest and lowest measurement ranges, the adjacent Iso-Accuracy chart applies also as follows:
$50 \mathrm{mV}-240 \mathrm{mV}$ and $5 \mathrm{~mA}-24 \mathrm{~mA}$
Normal Speed
Interpolated trim

For Fast Speed, on all ranges, the Normal Speed accuracy figures must be doubled. Supply frequency rejection is also reduced, causing additional unquantifiable errors dependent on measurement lead layout, particularly at frequencies below 600 Hz and low a.c. drive levels.
$0 / C$ and S/C Trim corrections under various conditions of interpolation, speed and level are given in the table following these Iso-Accuracy charts.

For impure components, and for measurements on the highest or lowest available ranges, the full accuracy expressions, shown below, apply. During the first hour of operation, parallel capacitance trim may drift by up to 0.05 pF , series impedance by up to $0.2 \mathrm{~m} \Omega$. Subsequent drifts, including ambient temperature change not exceeding $5^{\circ} \mathrm{C}$, are included in the interpolated trim correction figures in the table (page 2-18).

For all Q values:
Q accuracy $=A(Q+1 / Q)$
High inductance values:
Read Q accuracy direct from chart
Low inductance values:
Q accuracy $= \pm\left(A+100 R_{T} / \omega L x\right)(Q+1 / Q) \%$
Inductor series loss resistance

- accuracy $= \pm(A . \omega L x / R x) \%$

Inductor parallel loss resistance

- accuracy $= \pm(A . \omega L x R x) \%$
where
$A=$ Accuracy from adjacent chart
$L x=$ measured value of unknown component
Rx = measured value of unknown component
$R_{T}=$ sum of Z_{I}, R_{N}, R_{L} (as appropriate, from Table - page 2-18).
$\omega=2 \pi x$ frequency
0/C TRIM CORRECTIONS $f=$ frequency in kHz

	INTERPOLATION		NORMAL SPEED		LEVEL . $5-5 \mathrm{~V}$		LEVEL . 25 V		LEVEL .IV		
FREqUENCY $\text { RANGE (} \mathrm{Hz} \text {) }$	$\begin{aligned} & Y_{I} \\ & (n S) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{I}} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & Y_{N} \\ & (n S) \end{aligned}$	$\begin{aligned} & { }^{C_{N}} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & Y_{L} \\ & (n S) \end{aligned}$	C_{L} (pF)	Y_{L} (nS)	C_{L} (pF)	$\begin{aligned} & Y_{L} \\ & (n S) \\ & \hline \end{aligned}$	C_{L} (pF)	
20-60	. 13	.02/f	. 04	. $007 / \mathrm{f}$. 2	.032/f	. 2	. $032 / \mathrm{f}$. 5	.08/f	For drive levels
80-1k	. 13	.02/f	. 03	.005/f	. 1	.016/f	. 2	.032/f	. 5	.08/f	
1k2-10k	.13xf	. 02	. 02	. 003/f	. $1 \times \mathrm{f}$. 016	. 2 xf	. 032	. $5 \times \mathrm{f}$. 08	below .lV multiply
12k-60k	. 2 xf	. 032	. $01 \times \mathrm{f}$. 002	. 16 xf	. 025	. $32 \times \mathrm{f}$. 05	1.3 xf	. 2	level corrections
75k-300k	1.6 xf	. 25	. 03 xf	. 005	. 32 xf	. 05	.64xf	. 1	$4 \times f$. 6	by .1V/level.

	INTERPOLATION		NORMAL SPEED			LEVEL $=50 \mathrm{~mA}$			
FREQUENCY RANGE (Hz)	$\begin{aligned} & Z_{I} \\ & (\mu \Omega) \end{aligned}$	L_{I} (nH)	${ }^{R} N$ $(\mu \Omega)$	$\begin{aligned} & x_{N} \\ & \left(\mu_{\Omega}\right) \end{aligned}$	$\begin{aligned} & \mathrm{L}_{\mathrm{N}} \\ & (\mathrm{nH}) \end{aligned}$	R_{L} ($\mu \Omega$)	x_{L} ($\mu \Omega$)	L_{L} (nH)	-
20-60	300	50/f	50	25	4/f	125	125	20/f	For drive levels below 50 mA multiply level corrections by $50 \mathrm{~mA} / \mathrm{level}$.
80-250	120	20/f	25	25	4/f	125	125	20/f	
300-10k	50	8/f	25	25	4/f	40	20	3.2/f	
12k - 30k	4xf	1.0	25	25	4/f	$4 \times f$	2 xf	. 4	
40k - 100k	$30 \times f$	5	. $5 \times \mathrm{ff}$	0	0	.13xf ${ }^{2}$. $065 \times{ }^{\text {f }}{ }^{2}$. $01 \times \mathrm{f}$	
120k-300k	$30 \times f$	5	. 5 xf	0	0	13xf	6.5xf	1.0	

[^0]: Conductance (G): Find accuracy for equivalent R value from $R=1 / G$

